Kadec norms on spaces of continuous functions
نویسندگان
چکیده
We study the existence of pointwise Kadec renormings for Banach spaces of the form C(K). We show in particular that such a renorming exists when K is any product of compact linearly ordered spaces, extending the result for a single factor due to Haydon, Jayne, Namioka and Rogers. We show that if C(K1) has a pointwise Kadec renorming and K2 belongs to the class of spaces obtained by closing the class of compact metrizable spaces under inverse limits of transfinite continuous sequences of retractions, then C(K1 ×K2) has a pointwise Kadec renorming. We also prove a version of the three-space property for such renormings.
منابع مشابه
Some Geometric properties in Orlicz- Cesaro Spaces
On the OrliczCesaro sequence spaces ( ces ) which are defined by using Orlicz function , we show that the space ces equipped with both Amemiya and Luxemburg norms possesses uniform Opial property and uniform Kadec-Klee property if satisfy the 52 -condition.
متن کاملOn rarely generalized regular fuzzy continuous functions in fuzzy topological spaces
In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.
متن کاملTopological number for locally convex topological spaces with continuous semi-norms
In this paper we introduce the concept of topological number for locally convex topological spaces and prove some of its properties. It gives some criterions to study locally convex topological spaces in a discrete approach.
متن کاملON SOMEWHAT FUZZY AUTOMATA CONTINUOUS FUNCTIONS IN FUZZY AUTOMATA TOPOLOGICAL SPACES
In this paper, the concepts of somewhat fuzzy automata continuous functions and somewhat fuzzy automata open functions in fuzzy automata topological spaces are introduced and some interesting properties of these functions are studied. In this connection, the concepts of fuzzy automata resolvable spaces and fuzzy automata irresolvable spaces are also introduced and their properties are studied.
متن کاملAlternative approaches to obtain t-norms and t-conorms on bounded lattices
Triangular norms in the study of probabilistic metric spaces as a special kind of associative functions defined on the unit interval. These functions have found applications in many areas since then. In this study, we present new methods for constructing triangular norms and triangular conorms on an arbitrary bounded lattice under some constraints. Also, we give some illustrative examples for t...
متن کامل